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CHAPTER I

INTRODUCTION

The general objective of the research described here is to

measure combinations of third-order elastic constants of cubic sinole

crystals. In the macroscopic theory of elasticity, the strain enerqy

density of the crystal can be expressed as a power series expansion

in terms of the elements of the strain tensor. The coefficients of the

second-order terms, multiplied by (2!), are called second-order elastic

(onstants; the third-order elastic constants o-e the coefficients of the

third-order terms, multiplied by (3!),

In the microscopic theory, the potential energy of the crystal

:an he expressed as a Taylor series in terms of the displacements of the

atoms from their equilibrium positions. The coefficients in this series

are called coupling parameters.

Pfleiderer (1962) and Coldwell-Horsfall (1963) exoressed the

second- and third-order couplina parameters for face-centered cubic

crystals in terms of the second- and third-order elastic constants,

assiming nearest neighbor interactions only. Coldwell-Horsfall (1963!

presented similar relations for body-centered cubic crystals, assuminq

nearest and next-nearest neiqhbor interactions, and examined the case

of central forces for both lattice types. Measurements of third-order

elistic constants can therefore give information about the interatomic

i;,ential a"d forces between atoms.

iw
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Several physical properties of solids result from, or depend upon,

the presence of the anharmonic terms in the strain energy density, These

properties include thermal expansion, heat conduction, the proportionality

of specific heat to temperature at temperatures above the characteristic

Debye temperature, the difference between isothermal and adiabatic elastic

constants, the dependence of second-order elastic constants on temperature

and pressure, the interaction of two lattice waves, the attenuation of

high frequency sound waves, and waveform distortion of sound waves.

Several experimental techniques have been used to measure

third-order elastic constants of various solids. Measurement of the

dependence of the second-order elastic constants on hydrostatic pressure

gives combinations of third-order elastic constants but does not give

the complete set of these constants for a particular crystal structure.

Lazarus (1949) measured the pressure dependence of the second-order

elastic constants of single crystals of NaCl, KCI, CuZn, Cu, and Al.

Daniels and Smith (1958) made similar measurements on Cu, Ag, and Au.

Hearmon (1953), using equations obtained by Birch (1947), determined

what combinations of third-order elastic constants could be calculated

from Lazarus' data.

Seeger and Buck (1960) and Meingailis, Maradudin, and Seeger

(1963) Proposed an optical method of measuring third-order elastic

constants of transparent crystals, and Parker, Kelly, and Bolef (1964)

used the method to measure a third-order elastic constant (Ci11 ) of NaCl.

An initially sinusoidal finite amplitude ultrasonic wave propagatina

Through the crvstal distorts as it propagates, producing an asymmetric

diffraction pattern of monochromatic liqht directed perpendicular to the

T 
p
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direction of the sound wave. Combinations of third-order elastic

constants can be calculated from measurements of the light intensities

in the positive and negative diffraction orders.

Barker and Hollenbach (1970) developed an interesting technique

tor measuring third- and higher-order elastic constants. The sample

is struck by a projectile (and destroyed), and the resulting strain

is measured. Graham (1972) calculated elastic constants of fused silica

and sapphire from the data of Barker and Hollenbach (1970) and Graham

and Brooks (1971).

One of the most widely used methods of measuring third-order

elastic constants requires a measurement of the change in sound

velocity with uniaxial stress, The first determination of a complete

set of third-order elastic constants of isotropic materials was made

by Hughes and Kelly (1953) by measuring the change of ultrasonic

velocity with hydrostatic pressure and with uniaxial stress in poly-

styrene, iron, and pyrex glass. For the case of cubic crystals, Seener

and Buck (1960) obtained relations for the sound velocities in crystals

subjected to hydrostatic pressure and uniaxial stress, in terms of

second- and third-order elastic constants. Bateman, Mason, and

McSkimin (1961) then performed the measurements on the cubic crystal

germanium and obtained the first complete set of six third-order elastic

constants of a cubic crystal. Measurements followed by Drabble and

Gluyas (1963) on germanium, McSkimin and Andreatch (1964) on germanium

and silicon, Bogardus (1965) on germanium, magnesium oxide, and fused

silica, Chang (1965) on NaCl and KCI, and Thurston, McSkimin, and

Andreatch (1966) on quartz. The third-order elastic constants obtained

V - -_ _ - - w. -- - - _ I.
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by this method are neither truly adiabatic nor isothermal because an

adiabatic wave propagates through an isothermally stressed medium

(Skove and Powell, 1967).

To apply the above technique to metals would reouire small stresses

because metal single crystals are easily deformed plastically. Hiki and

Granato (1966) used a sensitive method of measuring changes in velocity

with stress to measure complete sets of six third-order elastic constants

of prestressed single crystals of copper, silver, and gold.

Another approach to the determination of third-order elastic

constants involves the nonlinear phenomenon of the interaction of elastic

waves. Jones and Kobett (1963) performed classical calculations of the

scattering of two plane, intersecting, elastic waves in an anisotropic

medium. Their predicted scattered waves were experimentally detected

by Rollins (1963). Taylor and Rollins (1964) presented a quantum

mechanical treatment of the process, and their results were compared

with experimental measurements by Rollins, Taylor, and Todd (1964),

Dunham and Huntinqton (1970) extended the theory of Taylor and Rollins

and performed an experimental study usinq samples of fused silica and

NaCI.

In the present experiments, combinations of third-order elastic

constants are measured by an ultrasonic harmonic generation technique,

As an initially sinusoidal wave propagates through a solid, higher

harmonics are generated. This effect was observed and first reported

by Gedroits and Krasilnikov (1963) and Breazeale and Thompson (1963).

Breazeale and Ford (1965) established a relationship between the

k
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third-order elastic constants and the solution to the nonlinear equation

describing the propagation of an initially sinusoidal ultrasonic wave

along a pure longitudinal mode direction in a cubic crystal. By measuring

the amplitudes of the fundamental and second harmonic components, certain

combinations of third-order elastic constants can be calculated, as

described in Chapter II. A capacitive receiver capable of measuring

the absolute amplitudes of the fundamental and second harmonic components

of a plane wave was developed by Gauster and Breazeale (1966), and they

used the receiver to measure combinations of third-order elastic

constants of copper. Yost and Breazeale (1973) then used the capacitive

receiver for measurements on fused silica and combined their results

with the results of Dunham and Huntington (1970) to obtain the first

complete set of adiabatic third-order elastic constants.

The harmonic generation technique has been valuable for low

temperature measurements. Meeks and Arnold (1970) used the technique

to measure combinations of third-order elastic constants of strontium

titanate between 106 and 300'K, after Mackey and Arnold (1969) had

performed the measurements at room temperature. Peters, Breazeale, and

Pare (1968) developed a pneumatically controlled variable gap capacitive

receiver to be used for low temperature measurements, and they used it

to measure combinations of third-order elastic constants of copper down

to liquid nitrogen temperature (Peters, Breazeale, and Par6, 1970),

Similar measurements were performed on germanium (Yost and Breazeale,

1974). Bains and Breazeale (1976) then extended the technique through

liquid helium temperaL'- and measured germanium, and temperature
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dependent measurements followed on four types of fused silica (Cantrell

and Breazeale, 1978), on copper (Yost, Cantrell, and Breazeale, 1980),

and on silicon (Philip and Breazeale, 1981).

In previous experiments, the measurements were performed on

single crystals that were large enough to allow the use of transducers

whose diameter to wavelength ratio permitted a plane wave approximation,

However, some single crystal samples are not available in large sizes.

To perform the measurements on smaller samples would require smaller

diameter transducers. With a smaller diameter to wavelength ratio the

plane wave approximation miqht no longer be valid and diffraction effects

would need to be considered. The objectives of the present research

were to develop the capability to perform the measurements on small

samples, to present a theoretical model consistent with the results, and

to use the method to make the measurements on a small sample.

A theory treating the generation of the second harmonic component

in the field of a plane circular piston radiating into a fluid has been

presented by Ingenito and Williams (1971). They solved a nonlinear

wave equation by means of first-order perturbation theory to obtain an

expression for the second harmonic as a function of position, in terms

of an integral of the square of the fundamental component. They

presented an expression for the value of the second harmonic integrated

over a circular area coaxial with the source and of the same diameter

as the source, and an expression for the second harmonic on the axis,

Rogers (1970) presented a theory on the same topic. Kunitsyn and

Rudenko (1978) treated the problem by solving the nonlinear equation
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describing diffraction in the quasioptical approximation using the

method of successive approximations. Lockwood, Muir, and Blackstock

(1973) approached the problem by using weak-shock theory and restricted

their analysis to the far (Fraunhofer) field.

In the present experiments, in order to develop the capability to

perform the measurements on small samples, data were initially taken on

large samples of copper. Combinations of third-order elastic constants

of copper had been previously measured in the same laboratory by the

harmonic generation technique, allowing an opportunity for comparison of

the results of the present experiments with previous results. The small

samples on which measurements were made were two members of the

perovskite family, CsCdF 3 and KZnF 3. Professor A. Zarembowitch and

others at the Universit6 Pierre et Marie Curie, Paris, France, have been

studying structural phase transitions between the cubic and tetragonal

structure in fluoperovskites and attempting to establish a connection

between these instabilities and the nonlinear behavior of the materials.

The data obtained in the present experiments complement their data,

which is reported by Fischer (1979) and Fischer, Zarembowitch, and

Breazeale (1981).

ki:A.



CHAPTER II

THEORY OF ULTRASONIC NONLINEARITY IN SOLIDS

The theory of ultrasonic nonlinearity in solids can be treated

using classical continuum mechanics or quantum mechanics, A treatment

using continuum mechanics will be presented in this chapter. The

quantum mechanical approach gives identical results [cf. the tutorial

paper by Bajak and Breazeale (1980)]. In the classical treatment the

equations of motion are obtained from Lagranae's equations for continuous

media. The potential energy term in the Lagrangian density is the strain

energy density which is written in terms of the Lagrangian strains. The

resulting equations of motion are simplified and solved. The solution

shows that combinations of third-order elastic constants can be obtained

by measurement of displacement amplitudes.

I. DEFINITION OF LAGRANGIAN STRAINS

Let the position of a point in an unstrained solid be given by

the coordinates (a1 , a2, a3). When the solid is strained, let the

position of the point be given by the coordinates (xl , x2, x3 ). The

components of the displacement are

ui = xi - ai  (11.1)

The subscript i can have the value 1, 2, or 3.

The square of the distance between two points that are close

together is

8
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& = dai2, (11.2)

using the Einstein summation convention of summinq over repeated

indices. The square of the distance between the two points in the

strained state is

dz 2 = dxi2 = (da. + dui) 2 = (dai + da

Su. iu i ui

= dai2 + 2 - daida. + da 1 da (11.3)
i a . 1 3 a. ak Jdk

Since d72 = dai , the above equation is

d 2 - dz2 = 2[ (-u2 + u uk  uk
- a---M + 8ai  a]dij

= 2rijdaida j  (11.4)

The -ij are the elements of the Lagrangian strain tensor.

11. THE EOUATIONS OF MOTION

The equations of motion can be obtained from Lagrange's equations

for continuous media (Holt and Ford, 1967). Lagrange's equations are

d ;,L) + d, a 0 (11.5)
dt dak 1 ( ,xa)

The Lagrangian density is
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1 • 2 ) , (11.6)L - pxi

where p is the unstrained mass density and (n) is the strain energy per

unit unstrained volume. The properties of the medium enter the equations

of motion through the strain energy density I(n).

III. THE ELASTIC CONSTANTS

The strain energy density can be written as a power series

expansion about the state of zero strain in terms of the Lagrangian

strains:

(n)= 0 + 1 + 2 + .3 
+ . . (11.7)

The first term, 0' represents the energy of the unstrained medium and

is constant; the second term, I' is zero because the first derivative

of with respect to strain, evaluated at zero strain, is equal to zero.

The terms of order higher than three are neglected. The terms that

will be of interest in Lagranae's equations can be written, using the

Einstein summation convention,

C2 = -CCijk2nij T Ik (11.8)

and

3= T- ijkzmnnijnkznmn (11.9)

The coefficients Cijk 9 appearing in the second-order terms are called



the second-order elastic constants and the Cijkmn are called the

third-order elastic constants.

The elastic constants can also be defined with a thermodynamic

approach if the physical process being cons dered is purely adiabatic

or purely isothermal. Denoting the internal energy per unit volume

by U and the Helmholtz free eneray per unit volume by F, the elastic

constants are defined (Brugqer, 1964) by

i (adiabatic, n _ 2) (IT.I0)
ijkj ... r I."'iij ' k ..j

and

T F
Ci .

T n F (isothermal, n > 2) , (11.11)
ijk , ... z ..ij. ...

where S denotes the entropy and T denotes the temperature.

The elastic constants defined by Eq. (11.10) are called adiabatic

elastic constants, and the elastic constants defined by Eq. (II.11) are

called isothermal elastic constants. Since F = U - TS, the distinction

does not apply at absolute zero.

The propaqation of an ultrasonic wave through an unstrained

medium is an adiabatic process. To describe this process, the strain

energy density :, appearing in the Laqrangian density is identified with

the internal enerqy density U. Thus, the quantities measured in the

present experiments are combinations of adiabatic third-order elzstic

constants.
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In general there are 81 second-order and 729 third-order elastic

constants. The number of independent constants is lower if there are

lattice symmetries. For all cubic crystals there are three independent

second-order elastic constants, and for the most symmetrical classes of

cubic crystals there are six independent third-order elastic constants

(Birch, 1947). All of the samples measured in the present experiments

were cubic crystals havina six independent third-order elastic constants.

It is conventional and convenient to contract the suoscript

notation for the elastic constants (Voigt, 1928) as follows:

11 1 1, 22 - 2, 33 , 3, 23 . 4, 13 5, 12 6

Since the strain tensor elements ij are symmetric, permutations of the

subscripts ij are equivalent. The subscript notation for the strains

will not be contracted. Using Brugger's (1964) notation, the three

independent second-order elastic constants for cubic crystals are C1 I,

C12, and C44, and the six independent third-order elastic constants are

CII I, C11 2, C123, C144, C166, and C4 5 6.

IV. THE NONLINEAR WAVE EQUATION AND ITS SOLUTION

The nonlinear wave equation describinq the propaqation of an

ultrasonic wave through the sample can be obtained from Lagrange's

equations (11.5). Identifyinq D(n), appearing in the Lagranqian

density (11.6), with the internal energy per unit vulume U, as pre-

viously discussed, the following equation can be obtained:

TWO.
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d U :iU (U1i)
xi -dak n ik qk aq)

This equation applies for any direction of propagation and any wave

polarization. It can be simplified by considerinq only pure mode

longitudinal plane waves. Pure longitudinal waves can propaqate in the

[100], [110], and [111] directions in a cubic crystal. The equation of

motion pertainin to a pure longitudinal plane wave propagatinq in one

of these three directions becomes (Breazeale and Ford, 1965)

_=2u + Tu 2u
QU = K2  2 + (3K2 + K ) U , (11.13)

where K2 and K3 are linearly independent combinations of second-order

and third-order elastic constants, respectively, as shown in Table II-1.

The perturbation solution (valid for distances much less than the

discontinuity distance) to Eq. (11.13) is given by Breazeale and Ford

(1965) for a sinusoidal driver located at a = 0 by

3K2 + K3
u A1 sin(ka - wt) - 8K 2  )Al2 k a cos 2(ka - wt) +

(II.14)

where

A1 is the displacement amplitude of the fundamental frequency

component at a = 0,

k is the wavenumber,

a is the distance of propagation,

is the angular frequency,

t is time.

• = m l -
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Table II-I. K2 and K3 for the Principal Directions in a Cubic Crystal

Direction K2 K3

[1ooJ C 11  C i1l

C11 + C12 + 2C44  Cill + 3CI1 2 + 12C 16 6
[110] 2 4

[111] C11 
+ 2C1 2 + 4C4 4  1

3 i (CII + 6C112 + 2C144

+ 24C16 6 + 2C12 3 + 16C4 56 )

kI
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The first term in the solution is the component havinn the fundamental

frequency; the second term is the component having the second harmonic

frequency. The solution also contains higher harmonic terms which

have been neglected. The amplitude of the second harmonic component,

denoted by A2, is given by

A 2  3K2 + K3 )A 2k2a(15
A 2=( 8K 2  (1115)

and is seen to be proportional to the square of the fundamental

amplitude, the square of the frequency, the propaaation distance, and

a term containing the combinations of elastic constants. By measuring

the displacement amplitudes of the fundamental and second harmonic

components and knowing the value of K2, the combinations of third-order

elastic constants K3 can be calculated. The value of K2 for a given

direction is given by

K2 = Pv (11.16)

where v is the velocity of sound in the given direction. Rearranqing

Eq. (11.15) qives

8A2

K3  2 (3 2 2- = 3 + ) ( 17)
A1 2kh a kn a

The second term in the parentheses in Eq. (11.17) is denoted by £
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A 8A2  K 2+ K3)
A12k2 a K

The quantity is equal to the negative of the ratio of the coefficient

in the nonlinear term in the wave equation (11.13) to the coefficient

in the linear term; : is therefore called the nonlinearity parameter.

(This definition of the nonlinearity parameter F is consistent with the

corresponding definition for liquids and qases. The expression oiven

for S is a factor of three greater than the expression used for F by

Cantrell (1976).)

The theory presented in this chapter has led to an equation that

shows that the nonlinearity parameter 3 (and K3) can be determined from

a measurement of the amplitudes of the first and second harmonic com-

ponents of a plane wave. Two of the objectives of the present research

are to develop the capability to measure these quantities using waves

that are not plane, and to form a better understanding of the diffraction

of an ultrasonic wave propagating in a nonlinear medium. A comparison

of the values to be measured with accepted values of i-' and K 3 serves as a

basis for formulating an approach to nonlinear diffraction theory.



CHAPTER III

APPARATUS, PROCEDURE, AND SAMPLES

I. EXPERIMENTAL CONSIDERATIONS

The method of measuring the displacement amplitudes of the

fundamental and second harmonic components of a plane ultrasonic wave

propagating through a solid sample will be discussed in this chapter.

For the experiments to be described, as well as for previous experi-

ments [Gauster (1966) and others], a fundamental frequency of 30 MHz

was selected for the following reasons. The amplitude of the second

harmonic component is proportional to the square of the fundamental

frequency; therefore the hiqher the frequency, the better the signal

to noise ratio. However, attenuation and the effects of nonparallelism

of the surfaces of the sample also increase with increasing frequency.

A frequency of 30 MHz was found to be a good compromise. Also, the

diameters of the transducers used in previous measurements were larae

enough (1.27 cm) that the diameter to wavelenqth ratio using 30 MHz

was large enough to justify a plane wave approximation.

The ultrasonic wave was pulsed in order to avoid interference

effects. A pulse repetition rate of 60 pulses/second was used to

minimize heating of the sample.

In the theory of finite amplitude wave propagation the second

harmonic amplitude is related to the fundamental amplitude by a simple

integral power law only in the limit of infinitesimal fundamental

17



amplitude (Thurston and Shapiro, 1967). Therefore the initial

fundamental amplitudes were minimized to levels providing useful signal

to noise ratios for the generated second harmonic components,

II. THE DETECTOR APPARATUS

The measurements of the displacement amplitudes were made using

the detector apparatus pictured in Figure 111-1. A cross sectional view

of the apparatus is shown in Figure 111-2. An ultrasonic pulse is

transmitted into the sample from a piezoelectric x-cut quartz transducer

and causes the optically flat end of the sample to vibrate. An optically

flat electrode is located approximately ten microns below the end of the

sample and forms parallel plate capacitor with it. A dc bias voltage

of the order of 150 volts is applied across this capacitor. When the

ultrasonic pulse impinges upon the end of the sample, the gap spacing

of the capacitor changes, and a current is produced. The fundamental

frequency signal and the second harmonic signal are separated electronically.

The displacement amplitudes A1 and A2 are calculated by determining the

current and the initial gap spacing.

The initial gap spacing is measured with an impedance bridge. The

current is determined by measuring the voltage across a known impedance.

Since it is preferable to measure a continuous voltage rather than a pulsed

siqnal, a substitutional continuous signal is used which is adjusted to

produce the same output signal as that received using the pulsed ultra-

sonic wave.
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IFiqure 111-1. The detector apparatus. A\ 2.5E cm diameter .arirlt,
is shown.
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// Electrode

Transducer

Sample

- - Receivinq Electrode

Figure 111-2. Cross sectional view of the detector apparatus.
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III. CALIBRATION AND PROCEDURE

The circLit diagram used for calculating the amplitudes is shown

in Figure 111-3. The detector circuit is represented by a Norton equiva-

lent circuit. The circuit elements and parameters are defined as follows.

CD is the quiescent capacitance of the detector,

CS is the stray capacitance of the detector,

L is the inductance of the wire leading from the banana jack to

the BNC connector (shown in Figure 111-2).

Z is the impedance of the resistor located in the base of the

apparatus, indicated in Figure 111-2,

GD is the current generator of the Norton equivalent circuit of the

detector,

GS is the substitutional signal current generator,

iD is the amplitude of the current produced by the ultrasonic

wave,

iS is the amplitude of the substitutional current,

S1 is a "switch" that is opened and closed by turninn on or off

the ultrasonic pulse,

S2 is a "switch" that is opened and closed by disconnecting or

connecting a signal generator.

Peters (1968) showed that the Th~venin equivalent circuit of the

capacitive receiver is a voltage source of voltage amplitude

2AVb
V - O (Il1.1)

so. .. , '- -- , -
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in series with a capacitor C., feedinq the amplifier impedance. In

Eq. (Ill.1), A is the displacement amplitude of the ultrasonic wave

within the solid, Vb is the dc bias voltaqe applied across the capacitive

receiver, and S0 is the gap spacing of the quiescent capacitive receiver.

The amplitude of vibration of the free surface of the sample istwice the

amplitude within the sample because the incident and reflected waves add.

This was taken into account in obtaining Eq. (111.1).

The current amplitude iD produced by the capacitive detector is

related to the voltage amplitude V by

iD = VWCD , (111.2)

where w is the angular frequency of vibration. Combining Eqs. (111.1)

and (IIl.2) gives

j 2AVbwC D
D  SO

The r,,tput from the substitutional source GS is adjusted to give the

same output from the amplifier as the output resulting from the ultra-

sonic pulse. Under this condition, iD is equal to iS, and the displace-

ment amplitude A can be calculated from Eq. (111.3) by measuring is.

The current iS is determined by measuring the voltage VS across

the current qenerator GS and measuring the impedance through which iS

passes. The equation is

____- 7j77 L iznz ~



24

s V s (111.4)

1Z + [ji(CD + CS) + 50 + jwL 1 I

The quantity Z is the impedance of the resistor located between

the substitutional source and the capacitive detector. At the frequencies

used in these experiments, the impedance of the resistor is not purely

resistive and is a function of frequency. The impedance can be determined

by the following procedure. Refer to Figure 111-4 which shows the circuit

used for the measurement of the impedance Z. The sample, detector assembly,

and bottom plate are removed from the apparatus, and 50 Q terminators are

connected to the two BNC connectors at the base of the apparatus. A cw

variable-frequency signal generator is connected to the terminator on the

side having the resistor. Probes A and B of a (Hewlett-Packard 8405A)

vector voltmeter are positioned at point 1, the phase angle between

the signals is zeroed, and the voltages are measured. Probe B is then

moved to point 2, leaving probe A at point 1. The signal generator

is adjusted to give the same channel A voltaqe as before, and the

channel B voltage and the phase angle are measured. The impedance Z

is calculated from the formula

Z = [j(,c + 1 -I BI - VB~e (111.5)R + jwL V 2 e

where C is the stray capacitance at point 2, including the probe tip

capacitance, Rl is the resistance of the precision terminator measured

with an impedance bridge, VBI and VB2 are the voltages measured by
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probe B at points 1 and 2, respectively, and is the phase angle. The

other symbols were defined previously.

The quantities C, RI , and L were measured. The value of L was

3.8 x 10-8 H; the value of R for the particular terminator used was

49.74 . The value of the stray capacitance C depends on the configura-

tion during the voltage measurements; in the present measurement C was

measured to be 10.75 x 10-12 F. Measurements of the impedance Z were

performed at the five frequencies from 28.0 MHz to 32.0 MHz in increments

of 1.0 MHz and at the five frequencies from 56.0 MHz to 64,0 MHz in

increments of 2.0 MHz. A computer program was written which used the

Lagrange five point interpolation formula (Abramowitz and Stegun, 1964)

to calculate IZI as a function of frequency from 28.00 MHz to 32.00 MHz

in increments of 0.01 MHz and from 56.00 MHz to 64.00 MHz in increments

of 0.02 MHz.

The magnitude of Z was about 11 kQ at the fundamental frequency

and about 9 kQ at the second harmonic frequency. The quantity in

brackets in Eq. (111.4) can be neglected compared to Z at the frequencies

used in these experiments. Therefore Eq. (111.4) can be approximated as

VSis = T " (111.6 )

Equating iD given by Eq. (111.3) with iS given by Eq. (111.6) gives an

equation for the displacement amplitude:

A 2V (111.7)
VbwCD.Z.
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2
The quantity A2/A1 , which appears in the nonlinearity parameter L, can

be written

~ 2 2A2 (VS2 Vb'lCDZI2  (111.8)A 12 VS2) S oIZ21

where the subscripts 1 and 2 refer to the fundamental and second harmonic,

respectively.

A block diagram of the experimental arranqement used for the

measurements of the displacement amplitudes is shown in Figure 111-5. A

cw signal from a variable-frequency oscillator (VFO) is separated into

pulses by a gated amplifier; the pulses pass through a 30 MHz bandpass

filter and drive the piezoelectric quartz transducer. The pulsed signal

from the capacitive receiver is sent through either a 30 MHz or 60 MHz

bandpass amplifier which isolates the signal to be measured, rectifies

the signal, and yields an output that is the envelope of the rectified

pulse. The VFO and gated amplifier are tuned to optimize the shape and

amplitude of this envelope. The output signal from the amplifier is

monitored with an oscilloscope and measured with a boxcar integrator, the

output of which is proportional to the time average of the input. There-

fore random noise is averaged to zero while the repetitive signal adds

to produce a measurable output voltage. Then the substitutional sianal

discussed previously is applied to the capacitive receiver and adjusted

by means of attenuators and an amplifier gain control to produce the same

output as that obtained from the ultrasonic pulse, as measured by the

boxcar integrator. To obtain the substitutional signal at the second
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harmonic frequency, the signal at the fundamental frequency is doubled

by a ring bridge mixer and filtered with a 60 MHz bandpass filter. The

(RMS) voltage across the signal generator is measured with an rf volt-

meter to determine ',S"

IV. THE QUARTZ TRANSDUCERS AND RECEIVING ELECTRODES

To investigate the effects of smaller diameter transducers and

receiving electrodes on the amplitude measurements, several quartz

transducers and receiving electrodes cf various diameters were made.

The diameters used in the experiments are listed on p. 35. For each of

the ten electrodes of diameters 1.27-0.188 cm, a correspondinq ground

ring was made having inside diameter 0.1 inch (2.54 mm) greater than

the diameter of the electrode. The brass receiving electrodes and

ground rings were machined using standard techniques and hand lapped.

The quartz transducers were reduced to the desired diameter by grinding

the edge of a larger transducer (or a broken fragment if available)

with a high speed (-, 20,000 rpm) silicon carbide grinding wheel. See

Figure 111-6. The transducer is secured to the end of a rod by attachinq

to the rod the adhesive from a cellulose tape in a manner similar to that

described by Yost (1972, p. 36). (The polyethylene film is not

necessary.) The quartz crystal is then very carefully pressed onto the

end of the rod. Then the rod, whose end surface was machined to be

perpendicular to the rod's axis, is placed in a collet in a milling

machine. The grinding wheel is secured to the table of the milling

machine. The rod and quartz crystal are slowly rotated by hand as the

wheel grinds the quartz. After each revolution of the quartz crystal,

&J
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Rotate by Hand

Collet

Pod

Ouartz Crystal
Grinding Wheel

Milling Machine Table

Direction of Translation
of Milling Machine Table

Figure 111-6. Diagram illustrating the procedure for qrindina
the quartz crystal transducers.
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the grinding wheel is moved slightly into the quartz using the

translational motion of the table. This procedure is repeated until

the desired diameter is obtained. Care should be taken in removinq the

quartz crystal from the rod. It may be necessary to dissolve the

adhesive usinq a solvent such as benzene.

V. THE SAMPLES

The samples on which measurements were made included [lO0] and

[1111 copper samples, a sample of potassium zinc fluoride (KZnF 3 ) and

a sample of cesium cadmium fluoride (CsCdF3), each of which had faces

perpendicular to the [1001 and [110] directions, and a [111] CsCdF3

sample. (The [111] Cu sample was used in nonlinearity measurements

performed by Gauster (1966) and Peters (1968). Gauster and Peters also

reported measurements on a [100] Cu sample different from tL;e one used

in the present experiments.) All of the samples are cubic crystals;

copper has the face-centered cubic structure, and CsCdF 3 and KZnF 3 have

the perovskite structure. The copper samples had been neutron irradiated

to pin the dislocations, which reduces nonlinear effects of the dis-

locations. The dimensions, shapes, and crystallographic directions are

shown in Figure 111-7. The densities and the values of K2 are given in

Table 11I-1. The K2 values for copper were calculated usinq the second-

orde2r elastic constants of Overton and Gaffney (1955):

Cl1 = 1.684 C12 = 1.214 C4 4 = 0.754

(in units of 1012 dynes/cm 2).

A ___6
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d 254 d = 2.54
S 3.96 d 72

4 [100]

A. Cu [111] B. Cu [100]

[110]

I b a = 1.203

[100 b = 1.039
c = 1.017

a

[110]

C. KZnF 3

[100 a = 1.170

b = 1.388
c c = 1.197

a = 1.093
b 0.419

c = 0.623

a Imperfection 
ia

D. CsCdF 3 [100] and [110] E. CsCdF 3 [111]

Figure 111-7. Drawinqs of the samples. The dimensions are qiven
in centimeters.
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Table III-1. Sample Densities and K 2 Values

Sample Density (103 kg/rn3) Direction K 2 (1012 dynes/cm
2)

Cu 8.95 [100] 1.684
[111] 2.376

CdF35.638 [100] 1.08
Cs C F3 [110] 0.995

[1111 0.967

KZnF 3  4.02 [100] 1.345
[110] 1.317
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The surfaces at the transducer and receiver ends of each sample

were lapped by hand optically flat. The CsCdF3 and KZnF 3 samples should

not be touched with bare hands; they were handled using laboratory

gloves. It is permissible, however, to lap these materials with an oil

slurry lapping compound. This should be done carefully because the

surfaces are easily scratched.

To provide a conductinq surface at the transducer and receiver

ends of the CsCdF 3 and KZnF 3 samples, a layer of copper of the order of
0

1000 A thick was evaporated onto the surfaces.

The quartz transducers were bonded to all samples with Nonaq

Stopcock Grease.

An imperfection of approximately ten millimeters in lenqth exists

in the ([100] and [1101) CsCdF3 sample as indicated in Figure 111-7.

VI. THE SEOUENCE OF THE EXPERIMENTAL INVESTIGATION

The first step taken to investiqate the effects of smaller

diameter transducers and receivers was to obtain data on the Cu LIll]

sample using four different diameter transducers with a 0.636 cm

diameter receiving electrode. The diameters used for these data and

the other data mentioned in this section are listed in Table 111-2.

Data were then obtained on the same sample using a 1.18 cm diameter

receiving electrode and three different diameter transducers. Next,

data were taken on the Cu [100] sample using the 0.636 cm diameter

receiving electrode and four different diameter transducers. Data were

then taken using transducers and receiving electrodes of equal diameter.

The measurements were made on the Cu [100] sample using ten diameters.
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Table 111-2. Transducer and Receiver Diameters Used in the Experiments

Receiver Transducer

Length Diameter Diameter
Sample Direction (cm) (cm) (cm)

Cu [Ili] 3.96 0.636 1.27
0.540
0.370
0.195

1.18 1.27
0.540
0.370

[100] 1.72 0.636 1.27
0.562
0.370
0.189

1.27 1.27
1.14 1.15
1.00 1.01
0.889 0.891
0.764 0.766
0.635 0.640
0.508 0.512
0.381 0.385
0.254 0.258
0.188 0.189

CsCdF 3  [I00] 0.508 0.512
0.381 0.385

[110] 0.508 0.512
0.381 0.385

[111] 0.381 0.385
KZnF3  [100] 0.508 0.512

[110] 0.381 0.385

. ... . . . .. . . _ , ml l l -
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After determining a method for correcting the data for diffraction,

measurements on CsCdF 3 and KZnF 3 were performed.

!I



CHAPTER IV

PESULTS, DISCUSSION, AND THEORETICAL TREATMENT

OF DIFFRACTION

To perform the third-order elastic constant measurements on small

samples requires small diameter transducers and receivers. It was

anticipated that the waves emitted from the smaller transducers would

not satisfy the plane wave assumption, and the results of the measure-

ments would differ from results obtained with laroe diameter transducers.

In order to determine how the smaller transducers and receivers affect

the measurements, and to learn how to make a reliable determination of

third-order elastic constants from measurements made with small

diameters, data were taken as outlined in Chapter III, Section VI.

I. RESULTS OF THE MEASUREMENTS WITH UNEOUAL DIAMETER
TRANSDUCERS AND RECEIVING ELECTRODES

The results of the initial measurements on the Cu [111] sample

using two different receiving electrode sizes and a range of transducer

sizes are plotted in Figures IV-l and IV-2. The quantities V1 and V2

are the voltmeter readings of the fundamental and second harmonic

voltages, respectively, and are equal to the root-mean-square values

of the input voltages. If a plane wave were incident over the full

face of the receiving electrode, according to Eq. (111.8) the quantity

V2/V 12 would be proportional to A2/A1
2 for a given bias voltaqe, fre-

quency, and receiver diameter and qap spacing. Eq. (11.18) shows that
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Figure IV-l. V /V 2 versus transducer diameter for the 3.96 cm
Cu [111] sample using ihe-0.636 cm diameter receivinn electrode.



39

0.20 -

I
0.15 0

( n.lo -

C."
C~\

0.05 0

I I I I I II

0.2 0.4 0.6 O.8 1.0 1.2 1.4

Transducer Diameter (cm)

2Fioure IV-2. V2/VI versus transducer diameter for the 3.96 cm
Cu 1i1] samnle usina the 1.18 cm diameter receivina electrode.
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2
the quantity A2/A1  should be constant for a given substance for a given

frequency, sample length, and direction of propagation of the ultrasonic

wave. Figures IV-I and IV-2 show that the measured values of V2/V1
2

depend strongly on transducer diameter for a given receiver diameter.

Slight differences in bias voltage, frequency, and gap spacing for the

data points on a given curve would not significantly alter the curves.

The results of the next set of measurements, on the Cu [100] sample of

length 1.721 cm, are shown in Figure IV-3. The curve, obtained using

a shorter sample and different direction of wave propaaation, is flatter

than the two previously discussed curves but still indicates a

difference between the measurements with the smallest transducer and

with the larger transducers.

Measurements performed with 12.7 mm diameter transducers have

been shown to yield accepted values of the nonlinearity parameter B. The

V2/V1
2 values in Figures IV-I through IV-3 tend to decrease smoothly with

transducer diameter and approach these accepted results. Therefore, curves

such as those in Figures IV-I through IV-3 can be used as calibration

curves for obtaining the nonlinearity parameters for small samples.

A family of curves for different sample lengths would be useful. To

obtain the nonlinearity parameter for a given sample measured with a

given diameter transducer, a correction factor would be obtained from

the selected calibration curve by comparing the value on the curve at

the given diameter with the value approached at the large-diameter end

of the curve.
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Cu [100] samole usina the 0.636 cm diameter receivinn electrode.
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II. RESULTS OF THE MEASUREMENTS WITH EQUAL DIAMETER
TRANSDUCERS AND RECEIVING ELECTRODES

One of the objectives of the present research is to develop a

theoretical model for the nonlinear diffraction problem that is

consistent with the results. The results reported in the previous

section are not optimum for a mathematical understanding of the problem.

It was decided to obtain data using transducers and receiving electrodes

of equal diameter. This would possibly facilitate the mathematical

treatment of the problem and might allow the utilization of existina

diffraction theory for that configuration.

Ten sets of data, using the diameters listed in Table 111-2,

p. 35, were taken on the 1.72 cm Cu [10(] sample. For, each of the ten

sets of data, a measurement was taken for ten different values of the

amplitude of the ultrasonic wave, with the exception of the measurements

made with the 1.0 cm diameter transducer and receiver, in which the

amplitude was varied through five values. Values of the fundamental

amplitude and the second harmonic amplitude were calculated for each

amplitude setting by assumina the wavefronts t' have been plane, with

no correction for diffraction. These values will be denoted by Alu

and A2u, the subscript u meaning "uncorrected for diffraction." For
2 2

each of the ten data sets a graph of A2u versus Aluk a was plotted.

The graphs for the largest and smallest diameters used, 1.27 cm and

0.189 cm, are shown in Figures IV-4 and IV-5, respectively. The

graphs for the other eight data sets are similar. The stiaight line

represents a linear least squares fit to the data. Each graph verifies
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the expected proportionality of the amplitudes of the second harmonic

component to the square of the amplitude of the fundamental component.

The straight lines do not pass through the origin. Bains (1974) has

attributed this type of result to residual noise. The present values

of A2u were corrected by subtracting the value of the A2u intercept,

calculated from a least squares linear regression formula.

The values of the nonlinearity parameter (= 8A2u/Auk 2a) could

have been calculated from the slopes of the lines in these graphs.

However, Yost (1972) pointed out that a different method has the

advantages of allowing measurements with good signal-to-noise ratios

and yielding a value which satisfies the assumption of infinitesimal

amplitude waves. In this method, the values of A2/AI
2 (or ,) calcu-

lated for each data point are plotted as a function of AI. A curve

drawn through these data points is extrapolated to A1 = 0, and the

value at this point is used for the nonlinearity parameter E. This

method has been particularly advantageous to previous experimenters

because their data at higher values of A1 differed significantly from

the data at lower values. However, the graphs of the calculated values

of Bu versus Alu for the present experiments, examples of which for the

1.27 cm and 0.189 cm diameter transducers and receivers are given in

Figures IV-6 and IV-7, respectively, do not show a trend in the data as

a function of Alu* Therefore, for each data set the nonlinearity

parameter tu was taken to be the averaqe of the individual values.

These values for the nonlinearity parameter, which were calculated

with no correction for diffraction, are plotted as a function of
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transducer and receiver diameter in Figure IV-8 and are listed on

p. 53. (There was an experimental problem in obtaining the data with

the 0.76 cm diameter transducer and receiver, and these data will not

be included in the analysis.) These values of the nonlinearity parameter

which were obtained using equal diameter transducers and receivers are

more consistent as a function of transducer diameter than were the

values obtained by varying the transducer diameter while keepinq the

receiver diameter fixed. However, these 6 u values still are not constant

as a function of diameter.

III. THE DIFFRACTION CORRECTION

The effects of diffraction will now be considered. In Chapter II

a theory was presented that enables one to calculate S and K3 from

amplitude measurements of a plane wave field described by nonlinear

acoustics. It is desired to be able to determine 6 and K3 for small

samples requiring small diameter transducers that emit waves that are

not plane, and to obtain a better understanding of the diffraction of

this nonlinear wave field. In the experiments, a circular transducer

oscillating at a particular frequency emits a wave into the medium.

As the wave propagates, higher harmonic components are aenerated. (In

the present study only the fundamental and second harmonic components

are used in the calculations.) For a plane wave, the second harmonic

component depends on the amplitude of the fundamental component, the

frequency, and the distance of propagation as stated in Chapter II.

For a wave that is not plane, it is presumed that the second harmonic



49

10 o

00

0- 0

4

2-

0

0 0.2 0.4 0.6 0.8 1.0 1.2

Transducer Diameter (cm)

Finure IV-8. u versus transducer diameter for Cu [100].



50

also depends on these factors, but it is not known a priori what the

dependence is or how to describe the diffracted nonlinear field. The

diffraction correction that allows a determination of and K3 is the

subject of this section.

The diffraction of the fundamental component will be considered

first, and the second harmonic component will be treated later. By

neglecting the loss of energy of the fundamental component to the

second harmonic, the diffraction of the fundamental component can be

treated by linear acoustics theory. The theory to be applied to the

fundamental component was obtained for a homogeneous fluid medium.

Analysis of data obtained with an anisotropic solid medium by utilizing

a diffraction theory applicable to a fluid medium is not unprecedented;

cf. Seki, Granato, and Truell (1956). [Papadakis (cf. Mason and

Thurston, 1975) extended the approach used by Seki et al. to application

to anisotropic solids for the linear diffraction problem.]

It is assumed that the field produced by the circular transducer

in the present experiments is the same as the field produced by a

plane circular piston source, set in an infinite rigid baffle and

oscillating at the fundamental frequency. The diffraction correction

integral is defined as the integral of the field from the piston source

over the surface of a circular area of diameter equal to that of the

source and coaxial with the source, divided by the integral over the

same area of a plane wave field considered to be produced by an

infinitely extended plane source oscillating with the same amplitude

and frequency as the piston. An approximate diffraction correction

integral can be obtained by inteqrating an approximate expression for

ILA
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the piston field given by Lommel (1886). This integral, called the

Lommel diffraction correction integral, denoted by DL, has been

evaluated numerically or graphically by several authors. Rocers and

Van Buren (1974) evaluated the integral analytically and obtained a

simple closed-form expression for it, valid at all distances from the

112source provided that (kR) /  1. Their result for the magnitude of

DL is

IDLI = {[cos(27/s) - do(27/s)]2 + [sin(27/s) -d(27/s)]2}
I/2

j (IV.l)

where

Jo = the zero order Bessel function,

l= the first order Bessel function,

s = 27z/kR 2 = z/(R / ),

z = the distance from the source plane to the field plane,

k = the wavenumber,

R = radius of the piston,

= wavelength.

This expression for IDLI was used for correcting the data for

the diffraction of the fundamental component. For each data set the

value of s was calculated and IDLIl was computed, the subscript 1

referring to the fundamental frequency component. Each nonlinearity

parameter f u was corrected by multiplying it by the square of IDL! 1

since A1 appears in the denominator of the expression for P. The

corrected values are given by

Lt- . , , P
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cl = IDLI2u (IV.2)

The resulting values are denoted by ccl' the subscript c meaning

"corrected" and the subscript 1 meaning that it was the fundamental com-

ponent that was corrected for diffraction. The values of the quantities

used in the calculations and the corrected values of the nonlinearity

parameters are given in Table IV-I, in which the subscript 1 indicates

that the value refers to the fundamental component. The corrected

values of the nonlinearity parameters are plotted as a function of

transducer diameter in Figure IV-9.

By examining Figure IV-9 it is seen that for the first time in

this study the results are consistent as a function of transducer

diameter. A measure of the consistency is the percent deviation of

the corrected nonlinearity parameters from the mean, which is tabulated

in Table IV-I. The mean value, c,'S 5.536.

This mean value of the corrected nonlinearity parameter values

can be used to calculate K3 by inserting_6C'l into Eq. (11.17). The

result is K3 =(-14.4 ± 0.3)x12 dynes/cm . Gauster and Breazeale

(1968), using a transducer having a diameter large enough that a

diffraction correction was not considered necessary, obtained the value

K3 -(-14.3 + 0.44) xlO 1 2 dynes/cm2, and Peters (1968) obtained

K3 = (-13.9 0.2) xlO dynes/cm 2
. [Gauster and Breazeale performed

the calculations using the second-order elastic constants given by Hiki

and Granato (1966); Peters' results and the present results were calcu-

lated using the constants given by Overton and Gaffney (1955).] There
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Table IV-1. Values of the Nonlinearity Parameter Corrected for
Diffraction of the Fundamental Component and Ouantities
Used in the Calculation*

Percent
Transducer Deviation
Diameter IDLI IDLI2 From the

(cm) S1  1 1 u Bc,1 Mean

1.27 0.0610 0.946 0.894 6.134 ± 0.039 5.484 ± 0.035 1

1.15 0.0747 0.941 0.885 6.336 ± 0.057 5.607 ± 0.050 1

1.01 0.0954 0.933 0.871 6.733 ± 0.171 5.864 ± 0.149 6

0.891 0.1236 0.924 0.854 6.269 ± 0.081 5.354 ± 0.069 3

0.640 0.2342 0.897 0.804 6.986 ± 0.075 5.617 ± 0.060 1

0.512 0.3736 0.870 0.756 7.469 ± 0.102 5.646 ± 0.077 2

0.385 0.6481 0.836 0.699 7.694 ± 0.054 5.378 ± 0.038 3

0.258 1.4434 0.748 0.559 9.461 ± 0.140 5.289 ± 0.078 4

0.189 2.6871 0.753 0.567 0.851 ± 0.081 5.585 ± 0.046 1

*Each uncertainty given is one standard deviation using (N-i)
weighting.
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is very good agreement between the results of the present measurements

and the previous results.

By using transducers and receivers of equal diameter and

correcting the data for diffraction of the fundamental field by using

the Lommel diffraction correction inteqral, results were obtained that

were consistent as a function of diameter and agreed with previous

measurements.

This conclusion is encouraging; however, no correction for

diffraction of the second harmonic component has been applied. A

model for the diffraction of the second harmonic field allowing a

diffraction correction to be calculated will now be proposed.

Essentially, the Kirchhoff diffraction theory has been applied to the

fundamental component. Therefore, the initial wave field can be con-

sidered to be composed of spherical Huyghens wavelets of fundamental

frequency emitted from elements over the surface of the source. Each

spherical wavelet generates a second harmonic component. By symmetry,

the generated second harmonic wavelets must also be spherical. The

amplitude of the second harmonic wavelets depends on some function of

distance. An integrated value over the receiver of this second har-

monic field is measured, and from this measurement the second harmonic

plane wave amplitude, which will be denoted by A2pw, must be determined,

However, the Kirchhoff diffraction theory is valid for a field obeying

the linear wave equation, so it cannot be applied directly to the

generated second harmonic field.

A field that does allow determination of the second harmonic

plane wave amplitude from a measurement over the receiver would be a

.. _ __ ,"iI
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plane wave having amplitude A2pw and frequency equal to the second

harmonic frequency, obeying the linear wave equation, passing throuqh

an aperture of diameter equal to that of the transducer. For this

linear field the measured value over the receiver could be corrected

by the Lommel diffraction correction to calculate A2pw If it can be

shown that the measured value over the receiver of the second harmonic

field in the actual physical case is nearly the same as the measured

value over the receiver for the linear wave, then the measured value can

be corrected by the Lommel diffraction correction to obtain the second

harmonic plane wave amplitude A2pw .

The value measured at the receiver depends on the phase

relationships of the second harmonic spherical wavelets and the ampli-

tudes of the wavelets. For both the physical case and the linear wave

the individual wavelets are spherical, and the frequencies of the wave-

lets are the same it Lhe two cases. Therefore the phase relationships

are the same.

For the linear wave the amplitude of the spherical wavelets is

(A2pw/r), r being the distance from the source element. In the

physical case the amplitude of the wavelets is some function of r,

divided by r. Since all the spherical wavelets reaching the receiver

travel about the same distance, the difference in amplitude between

different wavelets due to second harmonic generation is small. There-

fore the amplitude of the wavelets, at the position of the receiver,

can be approximated by a constant divided by r. This constant is equal

to A2pw , and the amplitude of the wavelets is A2pw/r, because that is
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the amplitude the spherical wavelets of an infinitely extended plane

wave would have in order to produce a plane wave of amplitude A2pw .

Thus the amplitudes of the wavelets for the physical case and the

linear wave are nearly the same.

The values of the nonlinearity parameter obtained by correcting

for diffraction both the fundamental and second harmonic components

are denoted by Bc,l,2

IDL1I2Bu 1C, 1
c,I,2 u-D -- - : T - "(IV.3)

The values of 2c,1,2 are listed in Table IV-2 along with the values of

s2 and IDL1 2, the subscript 2 referrinq to the second harmonic compo-

nent, and the Pc,1,2 values are plotted as a function of transducer

diameter in Figure IV-IO. It is seen from the graph and the last column

of Table IV-2, the percent deviation from the mean, that the values are

reasonably consistent as a function of transducer diameter, except that

the value obtained with the smallest (0.189 cm) diameter transducer is

somewhat higher than the others. The mean of these corrected values,

6.159, is about 11% higher than the mean of the values that were

corrected for diffraction of the fundamental only. Using this m-n value

of R c,, 2 to calculate K3, the result is K3 
= (-15.4 , 0.8) x 10 es.cm 2

The results obtained by correcting for diffraction of only the

fundamental component were discussed earlier in this section. Those

results were consistent as a function of transducer diameter and produced

a value of K3 which agreed very well with previous, accepted results.

J - X -: --- -.. . . .k " ' . . . . . . . .. -- - - - - - - "
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Table IV-2. Values of the Nonlinearity Parameter Corrected for
Diffraction of Both the Fundamental and Second Harmonic
Components and Ouantities Used in the Calculation*

Percent
Transducer Deviation
Diameter IDLI From the

(cm) 2 2 c,1,2 Mean

1.27 0.0305 0.962 5.701 + 0.036 7

1.15 0.0374 0.958 5.853 ± 0.052 5

1.01 0.0477 0.952 6.160 ± 0.156 0

0.891 0.0618 0.945 5.666 ± 0.073 8

0.640 0.1171 0.926 6,066 ± 0.065 2

0.512 0.1868 0.907 6.225 ± 0.085 1

0.385 0.3240 0.879 6.119 ± 0.043 1

0.258 0.7217 0.835 6.334 ± 0.093 3

0.189 1.3436 0.764 7-311 ± 0.060 19

*Each uncertainty given is one standard deviation using (N-1)

weighting.

-Abel
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This indicated that a correction obtained by also considering the

diffraction of the second harmonic component should be small and the

corrected results should be consistent as a function of transducer

diameter. The proposed model for the diffraction of the second

harmonic gives results which meet both of these desired conditions.

The method in which only the fundamental component was corrected is

considered to be the more dependable of the two correction methods.

It is seen in Figure IV-l0 that, although the c,l,2 values are

reasonably consistent as a function of diameter, the values appear to

approach the mean value obtained with the previous correction,

=cl 
= 5.536, as the diameter increases. This trend tends to support

the use of the correction of only the fundamental, and it indicates

that the two correction methods are in good agreement for the larger

diameters. The trend suggests that the theory that was used to obtain

the Pc,l,2 values may be slightly less applicable for the smaller

diameters than for the larger diameters. Also, since the values of

c,l,2 for the smaller diameters are larger than the corresponding

values of Bc,l' which agreed very well with accepted results, the

second correction may be a slight overcorrection,

IV. RESULTS OF THE MEASUREMENTS ON CsCdF 3 AND KZnF 3

The samples of CsCdF3 and KZnF 3, described in Chapter III, are

small enough that the data obtained on them require corrections for

diffraction. The data were taken and corrected in the same manner as

the Cu [100] data. The values of Alu and A2u, calculated with no
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correction for diffraction, are listed in Table IV-3 along with the

quantity (8A2u/A 2k
2a). Plots of A2 u versus Aluk 

2a are shown in Figures

IV-ll through IV-17. After correcting the A2u values by subtracting the

A2u-intercepts, the nonlinearity parameters were calculated and plotted

as a function of Flu (Figures IV-18 through IV-24). As with the copper

data, the uncorrected value of the nonlinearity parameter was taken to

be the mean of these calculated values. The data were then corrected for

diffraction of the fundamental component and for diffraction of both the

fundamental and second harmonic components, as was done for the copper

data. The pertinent quantities and results of the calculations for 6 and

K3 are listed in Table IV-4. The results of the measurements in the [100]

and [110] directions in CsCdF 3 using two different diameter transducers

are in good agreement. Notice that the percent differences between the

values of K3 obtained by correcting only the fundamental for diffraction

(K3(1 )) and the values obtained by correcting both the fundamental and

second harmonic (K3(1 92)) are all less than 9%. In Table IV-5, values

of combinations of third-order elastic constants are given, obtained

using the correction of the fundamental component only.

The values of 6 and K3 presented in Table IV-4, obtained using

the diffraction correction method discussed herein, are the values that

are being reported as a result of this research. It was indicated in

Section IV-l that a possible approach to determining the nonlinearity

parameter of a small sample would be the use of a calibration curve,

For comparison with the results qiven in Table IV-4, the calibration

correction is discussed here. The data presented in Figure IV-8 on

p. 49 is shotwn in Figure IV-25 with a smooth curve drawn through the
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Table IV-3. Values of A A, and (8 A2 /A 2 k 
2a) for GsCdF3 and

Sample, Fundamental Second Harmonic 8Au
Direction, ______ mpitd A2

Transducer .m10d Amliud A22u A2 k2a
Diameter (cm) (1010 M) (1012 m) Aluk

CsCdF 3 5 1.493 0,891 11.998
[10,1.793 1.249 11.672
[10,2.029 1.555 11.348

0.512 2.108 1.744 11.790
2.364 2.215 11 .907
2.580 2.603 11.745
2.817 3.134 11.863
2.974 3.511 11.920
3.152 3.935 11.899
3.348 4.477 11.992

Cs~dF 3 1 1.883 1.596 13.008
[10,2.043 1.853 12.838
[10,2.216 2.188 12.884

0.385 2.376 2.505 12.829
2.575 2.978 12.97P
2.709 3.324 13.95
2.882 3.669 12.772
3.033 4.121 12.952
3.210 4.626 12,976
3.370 5.104 12.992

CdFP1.914 0.838 7.528

[110F, 2.109 1.017 7.525
[11],2.310 1.201 7.4nf7

0.512 2.510 1.405 7.336
2.651 1.561 7.310
2.872 1.813 7.23.
3.012 2.041 7.402
3.153 2.246 7.433
3.313 2.462 7.377
3.534 2.774 7.306

CsCdF 3 9 2.592 1.589 7.A81

[10,2.771 1.783 7.339
[10,2.906 2.011 7.53n

0.385 3.081 2.234 7.442
3.224 2.465 7.496
3.403 2.739 7.475
3.529 2.980 7.566
3.681 3.222 7.516
3.847 3.491 7.455
3.991 3.705 7.355
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Table IV-3 (continued)

Sample, Fundamental Second Harmonic 8Au
Direction, ApiueAApiueA2
Transducer Amliud Alu Amplitue Aku2
Diameter (cm) (1010 M) (10 12m) lua

Gs~dF 3 9 1.715 0.565 16.426
[11,1.741 0.618 17.433
[11,1.802 0.650 17.124

0.385 1.857 0.686 17.012
1.907 0.738 17.343
1.967 0.752 16.619
2.013 0.802 16.937

KZnF 311.611 0.532 12.553
[10,1.715 0.610 12.696
[10,1.833 0.697 12.700

0.512 2.003 0.838 12.786
2.147 0.955 12.688
2.344 1.112 12.397
2.475 1.252 12.529
2.618 1.393 12.449
2.749 1.550 12.560
2.919 1.730 12,432

Kn3$1.715 0.363 8,169
K~F,1.839 0.421 8.231

[110], 1.964 0.490 8.415
0.512 2.068 0.538 8.323

2.203 0.615 8,386
2.328 0.684 8.363
2.432 0.747 8.360
2.546 0.834 8.516
2.650 0.884 8.331
2.775 0.964 8.294
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Table IV-5. Measured Values of Combinations of Third-Order Elastic
Constants of CsCdF3 and KZnF3 in Units of 1012 dyn/cm2

Sample C1il1  (C 112 + 4C 166) (6C 144 + C 123 + 8C 456)

CsCdF 3  -13.4 - 7.24 -46.6

KZnF 3 -16.8 -11.3
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data points. The data approach a value of the nonlinearity 
parameter

of approximately 5.5. The smooth curve can be used to approximate

a correction factor for data obtained using a transducer-receiver

pair of given diameter. The values on the smooth curve at 0.385 cm

and 0,512 cm, the diameters used for the measurements on CsCdF3 and

KZnF 3, are -8.3 and \,7.8. The correction factor would be 5.5/8.3 = .66

for the 0.385 cm diameter and 5.5/7.8 = .71 for the 0.512 cm diameter.

The correction factors obtained from the Lommel diffraction correction,

D L 1 2 in Table IV-4, range from 0.730 to 0.839 for the 0.385 cm

diameter and from 0.771 to 0.800 for the 0.512 cm diameter. The values

of K3 calculated from the calibration correction factors, listed in the

same order as that in Table IV-4, are -12.5, -12.5, -8.13, -7.85, -13.7,

-15.8, and -11.8, in units of 10 dynes/cm . The correction factors

obtained from the calibration curve do not take into account the length

of the sample or the wavelength of a given frequency wave in the

material. These quantities are taken into account by the Lommel

diffraction correction.

V. ESTIMATE OF THE DIMENSIONS OF THE SMALLEST
MEASURABLE SAMPLE

It is useful to estimate the dimensions of the smallest sample

measurable by the present technique. The minimum dimension transverse

to the direction of wave propagation is approximately 5 mm; this allows

the sample walls to be sufficiently outside the ultrasonic beam and is

large enough for measurement with the 0.19 cm transducer and receiver.

Equation (11.15) shows that the amplitude of the second harmonic
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component in a plane wave is directly proportional to the length of the

sample and depends on the quantities K2 and K3; thus the sample must be

long enough to allow a measurable second harmonic to be generated, and

this minimum length will depend on the material being measured, It is

estimated that this minimum length would be typically of the order of

4 mm.

It may not be possible to perform the measurements on a sample

having both the minimum transverse dimension and minimum length given

above. Measurement of smaller amplitudes tends to require larger

diameter transducer-receiver sets. For example, the [111] CsCdF 3 sample

of length 4.19 mm was measured with the 0.38 cm diameter transducer and

receiver, but data could not be obtained using the 0.19 cm or the

0.26 cm diameter transducer and receiver.

VI. ERROR ANALYSIS

The primary sources of systematic error are the measurement of

the substitutional signal voltage and the measurement of the impedance

of the resistor in the base of the capacitive detector housing as a

function of frequency. It is estimated that the systematic error for

the measurement of Bu is within ±12%. After correction of Bu for

diffraction, the mean value ac', agreed very well with previous, accepted

results (see Section IV-Ill), and the largest deviation of any of the

nine values from c,l was 6% (see Table IV-l, p. 53). Therefore

the error introduced into the determination of the nonlinearity

parametpr by the difrraction correction appears to be relatively small,

_A _
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since the error of the Pc'l values was well within the ±12% systematic

error in each case.

VII. SOME PROBLEMS ASSOCIATED WITH THE APPLICATION OF
DIFFRACTION THEORY TO THE PRESENT MEASUREMENTS

The nonlinear wave equation (11.13) that has been used to describe

the wave propagation is valid only for a pure longitudinal mode plane

wave. It was obtained from the general equation, (11.12), by assuminQ

that the only component of displacement, say uI , is along the pure mode

direction, so that u2 = u3 = 0, and that uI is a function only of a1

and t. However, in the diffraction problem the displacement also

includes the components u2 and u3 , and each displacement component is a

function of a1, a2, a3, and t. Thus Eq. (11.12) contains many terms

in the general case which are not present when considering only pure

longitudinal plane waves. From Eq. (11.12) three long coupled equations

are obtained, one for each of the directions labelled 1, 2, 3 [see

Gauster (1966)]. An attempt to solve the general equations would be

complicated, and would involve nonpure mode propagation.

The previously discussed theory that was used for the diffraction

correction was developed assuming the medium to be a homogeneous fluid.

The measurements of third-order elastic constants are performed on

solid media. At the surface of the solid a measurement is made of

displacement, a vector quantity. The measurement technique is sensitive

only to the component of displacement normal to the surface. Thus when

the transducers are large enouqh that the waves can be considered plane,

the measured value accurately represents the displacement field, but
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when the waves can no longer be considered plane, only the longitudinal

component is measured. In contrast, the parameter measured for a fluid

medium would be a scalar such as pressure or velocity potential. Thus

the fluid theory treats the measurement of a scalar quantity instead

of a vector quantity.

The anisotropy of the solid also leads to problems. The wave

speed is a function of direction in an anisotropic material, and there-

fore the assumption of spherical Huyghens' wavelets is not strictly

valid. Also, since parts of the diffracted wave travel in nonpure mode

directions, there is coupling to transverse modes.

Despite the approximations that must be made to treat the effects

of diffraction on the nonlinearity measurements, it has been demon-

strated that meaningful measurements can be made using the technique

presented. The data obtained in the present experiments are presented

as a contribution to the solution of the general problem of the

diffraction of waves propagating in a nonlinear medium.

VIII. SUGGESTIONS FOR FURTHER WORK

A result of the present research was to extend the harmonic

generation technique for nonlinearity measurements to include measure-

ment of smaller samples than could be measured previously. Consequently,

future measurements can include a wider range of materials. The

previously existing harmonic generation technique is capable of per-

forming the nonlinearity measurements as a function of temperature down

to liquid helium temperature. The temperature dependent measurements

can be extended to include small samples by modifying part of the

LIZ
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cryogenic apparatus and utilizing the diffraction correction. This work

has been begun by Jacob Philip.

Measurements in the [100] and [110] directions in KZnF 3 are

reported here. To obtain a third combination of third-order elastic

constants a measurement in the [111] direction is needed.

A more rigorous mathematical treatment of the diffraction of

finite amplitude waves would be desirable. A tutorial paper by Bajak

and Breazeale (1980) presents a quantum mechanical approach to the same

problem of plane wave harmonic generation that was treated classically

in Chapter II. In the quantum mechanical theory, two phonons of the

fundamental frequency interact to produce a phonon of the second

harmonic frequency. In the paper there is given an expression for the

amplitude of the second harmonic component as a function of the deviation

of the direction of the second harmonic wave vector from the direction

of the wave vector composed of the sum of the two fundamental frequency

wave vectors. This suggests the possibility to correct for diffraction

of the second harmonic. A means of implementing the correction for the

present experimental configuration would involve resolving the funda-

mental field into an equivalent set of plane waves and determining the

amplitudes of the phonons generated by the many interactions of the

phonons in the fundamental field.
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COMPUTER PROGRAM FOR THE CALCULATION OF THE MAGNITUDE OF

THE DIFFRACTION CORRECTION, JDLI. AS A FUNCTION OF S

The following computer program, DIFCOR.F10, and subroutine,

BES.FlO, written in FORTRAN for use on the DECsystem-lO Operating

System, is used to calculate the magnitude of the diffraction

correction, IDOLl , as expressed in Eq. (IV.l), as a function of s.

As written, the value of s varies from 0.00 to 74.99 in increments

of 0.01. The program is adapted from that written by D. W. Fitting.

00100 REAL J0,J1
00200 DIMENSION EIFCOR(7500) ,RINJJEX(750)
00300 DATA P1/3*1415926/
00400 OPEN(UNIT=25tFILE='E'IFCOR.OUT' ,ACCESS='SEOOU

00500 *DEYICE='DSKi4:
00600 DO 10 I=1v7499
00700 S=FLOAT(I)/100.
00800 ARG=2. *PI/S
00900 CALL EES(AROPJ0,J1)
01000 1.0 DIFCOR(I)= (SORT((COS(ARG)-JO)**2+(SIN(ARG)-Jl

01100 DIFCOR(0)=1*0
01200 DO 20 1=1,750
01300 20 RINDEX(I)=FLOAT(I-l)/l0.
01400 7YPE 6'(RINDEX(I),(DIFCUR(K)PK=(I-l)*l0P(I-l

01500 * I=1,756)
01600 6 FORMAT(1H1/1HO,36X,'DIFFRACTION CORRECTION DL
AS A FUNCTION OF S
01700 * '/IH0,3X 'S' ,7X, '0.00',6X, '0.01' ,6Xt '0.02',
01800 1 6X, '0.03' ,6X, '0.04' ,6X, '0.05' ,6X, '0.06' ,6X,
01900 2 '0.07',6Xt'0.08',6X,'0.09'/1H0/50(3XF4.1,10F
10.3/))
02000 END
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00100 SUBROUTINE BES(XPJOPJI)
00200 DIMENSION A(7),14(7)PC(7)PD(7)?E(7)PF(7)
00300 REAL J0vJ1
00400 DATA A/l.0,-.25,1.562495E-2,-4.34008E-4,6.77
4562E-6t
00500 1 -6.679876E-8Y,95152E-10/,D/.5,-6,249998E-2,2
* 604145E-3p
00600 2 -5.424265E-5,6.756882E-7,-5.378753E-992.08677
9E-11/9
00700 3 C/7.978846E-1 ,-2.31E-6,-4.97466E-2,-2.56824E-

00800 4 -1.769162E-l,1.0553E-1/PEI/-7.853982E-1,-1.249
919E-Ir
00900 5 -3.5586E-4p7.089471E-2p-4.384125E-2v-7. 127919
E-2v
01000 6 9.883782E-2/,E/7.978846E-1,4.68E-6,1.4937E-1t
4.61835E-3p
01100 7 -2.021039E-l,2.761768E-l,-1,460406E-1/vF/-2.3
56194Y
01200 8 3.749884E-l,5.085E-4,-1.722273E-1,6.022188E-2
1 .939723E-1,

01300 9 -2*126201E-1/
01400 IF(X#GT#3.0) GO TO 10
01500 JO=A( 1)+X*X*(A(2)+X*X*(A(3)+X*X*(A(4)+X*X*CA
(5)+X*X*(A(6)+
01600 *X*X*A(7))))))
01700 J1=X*('( 1 )+X*X*(B(2)+X*X*(B(3)+X*X*(B(4)+X*X

01800 *X*X*Et(7)))))))
01900 RETURN
02000 10 F=( ( (((C(7)/X+C(6) )/X+C(5) )/X+C(4) )/X+C(3) )/X
+C(2) )/X+C( 1)
02100 THO=(((((D(7)/X+D(6))/X+D(5))/XtD(4))/X+D(3)
)/X+D(2) )/X+
02200 *D(1)+X
02300 F1=(((((E(7)/X+E(6))/X+E(5))/X+E(4))/X+E(3))
/X+E(2) )/X+E(1)
02400 TH1=(((((F(7)/X+F(6))/X+F(5))/X+F(4))/X+F(3)
)/X+F(2) )/X+
02500 *F(1)+X
02600 JO=FO*COS (THO )/SQRT (X)
02700 J1=F1*COS(TH1 )/SQRT(X)
02800 RETURN
02900 END
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